Sustainable Aviation Fuels

ÜNITED

State of the Inclustry key trends for 2019 and beyond

Hask

Jim Lane, The Digest, March 2019

DigestData

The Bioeconomy's Venture Spotlight

The world's most widely read biofuels daily

Commercializer

Uh, what is it, exactly?

the OIOECONONNY

The \$2.7 trillion bioeconomy

As big as France, growing faster than China

The Bioeconomy Landscape

Applications

The SAF Landscape

Producers

SAF: An array of pathways

SAF: An array of policies

The Carbon Policy Landscape

US market biofuels volumes

US market carbon prices

Figure VI.B.2-1 D4, D5, and D6 RIN Prices (January 2013 – March 2018)

RIN Price Source: Argus Media Group

California market carbon data

US market ethanol ROI

US market biodiesel ROI

US market drop-in fuels economics

"NREL determined in 2012 that a 2,000-ton/day wood-based, greenfield plant would have a CAPEX of \$232.8 million. The minimum sales price needed to provide overall IRR of 10% on top of 60% financed at 8% was calculated to be **\$1.76 per gallon** with wood at \$71.97 per dry ton. Feedstock accounted for 55% of the operating cost, and these costs exclude subsidies."

"In California, we are now seeing project flow projecting a sustainable **\$7.63 price per gallon for renewable diesel** in the California market, where the Low Carbon Fuel Standard stacks on top of the RIN values from the federal Renewable Fuel Standard. According to those familiar with the project details, the assumed fuel price is \$7.63 per gallon at completion of the project. That's striking. The breakdown is as follows:

\$2.80 energy value

\$2.72 federal RIN value

\$2.11 California LCFS value

The anticipated CI of fuel produced by the project "should have a CI of ~10 gCO2e/MJ and receive a LCFS value of >\$2.00/gal.," according to project principals."

Growing r.diesel/jet capacity

(in millions of US gallons in annual production capacity)

The Feedstock Landscape

US market feedstock availability forecast

Feedstock	2012	2017	2022	2030	
		Million dry tons			
Baseline scenario					
Forest resources currently used	129	182	210	226	
Forest biomass & waste resource potential	97	98	100	102	
Agricultural resources currently used	85	103	103	103	
Agricultural biomass & waste resource potential	162	192	221	265	
Energy crops ^a	0	101	282	400	
Total currently used	214	284	312	328	
Total potential resources	258	392	602	767	
Total – baseline	473	676	914	1094	

High-yield scenario (2%–4%)				
Forest resources currently used	129	182	210	226
Forest biomass & waste resource potential	97	98	100	102
Agricultural resources currently used	85	103	103	103
Agricultural biomass & waste resource potential ^b	244	310	346	404
Energy crops	0	139–180	410–564	540–799
Total currently used	214	284	312	328
Total potential	340	547–588	855–1009	1046–1305
Total high-yield (2-4%)	555	831–872	1168–1322	1374–1633

Source: DOE Billion Ton Update

US market feedstock current use analysis

Table 2.1

Projected Consumption of Currently Used Biomass Feedstocks (Million Dry Tons per Year)

Source	Current	2017	2022	2030
Forest				
Fuelwood	38	72	96	106
Mill residue	32	38	39	42
Pulping liquors	45	52	54	58
MSW sources	14	20	20	20
Total forest	129	182	209	226

Agriculture				
Ethanol ^a	76 (109)	88 (127)	88 (127)	88 (127)
Biodiesel ^b	2	4	4	4
MSW sources	7	11	11	11
Total agricultural resources currently used	85 (118)	103 (142)	103 (142)	103 (142)
Total currently used resources	214 (247)	285 (342)	312 (351)	329 (368)

Source: DOE Billion Ton Update

US market feedstock availability analysis

Location of Potential Forestry Biomass Resources

US market feedstock price-geograph

Spatial distribution of logging residues at \$20 and \$40 per dry ton Figure 3.8 (delivered to roadside)

Figure ES.2 Estimated agricultural biomass under baseline assumptions

Estimated forest and agricultural biomass availability at \$60 per dry ton or less under

Feedstock Density (dry tons/square n

0

1-5

6 - 10

11 - 25

26 - 50

51 - 100

100

125 250

1

500 Miles

US regional feedstock availability

About 7 million tons of available residue biomass in the Northwest

Enough to produce around 500 million gallons of fuel, or support 1 billion gallons of demand in a 50/50 blend.

Source: DOE Billion Ton Update

about T

Dynamism of global biorefining drivers

The Disruptive Macros

Dietary change Currency / trade realignment Population shift Privacy vs Bandwidth (blockchain) Imaging resolution (e.g spyforce) Shift from text to pictures Antibiotic resistance Alterantive currency Rise of Jihad Intelligence in the Internet of Things (iIOT) Trade flow bottlenecking Political stability Transparency **Resource scarcity** Commodity prices Public opiinion Policy stability Urban development Telecommuting Autonomous systems Data infrastructure

Dynamism of human drivers & risks

Age Health Tolerance Wealth Identity Location Beliefs Aspirations Attitudes Ideas

Corporate Financial Technology Market Operational Construction Currency Political Policy Country Privacy

Population Inequity Climate Sustainability Ideas Inclusiveness Collaboration Mobility Genetics Robotics Bandwidth Storage Computational speed

Dynamism of global biorefining scale-up

What's working in highly dynamic development?

- Certification and LCAs
- Motivated feedstock strategic
- SARA
- Rapid response training
- Transparency

- Rate, yield focused
- Not Built Here
- Catalyst first
- Hire experience in dynamic markets
- Think science in the exec suite, markets in the lab

What's working in highly dynamic markets?

- Dynamic priced offtake
- Counter-cyclic carbon price
- Motivated feedstock strategic
- One deep strategic customer engagement who moves fast
- Spin off fixed-fee operational entity

- Transparency
- There are no advantaged processes or molecules, only advantaged moments
- Sell the risk, not the product
- Hedge policy and feedstock risk, not commodity risk

- Lean
- Stable
- Visible, credible
- Flat organization
- Values-driven

- Risk minimizers, not risk takers
- Persistence pays
- Construct, commission, co-own, operate
- Highly collaborative, but decisive
- High degree of cross-training

Key projects

Growing r.diesel/jet capacity

Neste Singapore 675 mgy

Neste Finland 200 mgy

Neste Rotterdam 300 mgy

Red Rock Oregon 10mgy

ENI Gela 175 mgy

Diamond Green Norco USA BioEnergy Arkansas 675 mgy

REG Geismar 115Mgy

ENI Venice 80 Mgy

Next Renewables Oregon 600 Mgy

World Energy Paramount 300 Mgy

20 Mgy

Fulcrum Nevada 10 Mgy

Fulcrum Chicago 40 Mgy

Cielo Canada 20 Mgy

REG/Phillips66 Washington 200 Mgy (est.)

Marathon North Dakota 183 Mgy

Velocys/BA UK 20 Mgy

Ryze Renewables Nevada 168 Mgy

I. Stabilized policy. II. Mature technologies. III. Seriousness in tackling transport emissions. IV. Better risk profiling for project finance markets.

We've been here before.

The airship that hooked William Boeing on aviation was filled with waste hydrogen - a nocost residue from making fertilizer.

Before aviation, William Boeing was in the wood business.

Saudi Aramco's founding CEO once sold coalto-oil conversions on

Thought up by a United Airlines CEO

Seattle's docks

Modern fueling started at Seattle's Pier 32

Projects, Projects and more projects: The Advanced Bioeconomy Deploys

